
Exploring SyGN algorithm
Which type of transform should be used?



Introduction

• Knowledge Gap 
• Given 10 types of SyN transform in ANTs.build_template() API, which one is 

best for our NiAD/ABC-DS study?

• Objective
• To understand how the algorithm works.
• To testify the performance of the SyGN algoritm on dataset with different 

characteristic 



Introduction: pseudo code of SyGN algorightm
1. Create an initial template by evenly-weighed summing all input images.
2. For the i-th iterations: 

1. For the j-th input image:
1. Pair-wise image registration on the input image to template. (`typeofTransform` is executed at here)
2. accumulate transforms by weighted sum.
3. accumulate warped images by weighted-sum.

2. Update new template by backward transforming the accumulated warped image to template space with a 
gradient. 

3. Iterate over all j-images for i-iterations.
4. Done.

Example tanning report that showing the L2-Norm of the transform for each 
image and each iteration (left) and accumulated L2-Norm of the transform within 
each iteration (right).



Method: Algorithm comparison

• I compared the following three ` typeofTransform` option provided in 
ants.registration() with mutual information as optimization metric:
• “SyNRA”: Rigid + Affine + deformable transformation.
• "SyN": Affine + deformable transformation.
• "SyNOnly": Only deformable transformation, no initial transformation. Assumes images are 

aligned by an initial transformation



Method: Image characterization

• I identify the following characteristic that is typical in the NiAD/ABC-DS 
dataset:
• Three lower-level factors:

• if_aligned: almost-aligned vs non-aligned
• if_inside_circle: without vs with inside circle
• if_equal_area: equal area vs unequal area

• Two higher-level factors :
• if_equal_intensity: intensity heterogeneity
• (additional dataset): structural heterogeneity

• Above of all, 2^4 combinations resulted 16 datasets and one additional 
dataset



Method: Data Simulation
• The control experiment schema was used to 

generated data. (see table and figure on the right)
• Experiment repetition = 15
• Data sampling = 100
• Registration iterations = 10
• Images size = 128x128 pixel

• To test the effect of structure heterogeneity, an 
additional dataset was included (see figure at 
below)

Design matrix used to simulate random image data (Left) ; 
4 by 16 images shown the first 4 images of 16 dataset (right).

The additional dataset including four images: 
square, star, octagon, circle.



Method : L2-norm Measurement
• Based on the locally Euclidean property of Riemannian geometry, I use the Euclidean distance (L2-

norm) to quantify the distance between the original and the warped image within each 
registration iteration:

• Usage:
• Compare final convergence between algorithm and dataset 
• Check if overfitting using the L2-norm as the learning curve



Result: Better convergence with SyN/SyNRA

• In general: 
• template converged better with SyN/SyNRA

than SyNOnly.

• Noticeably for non-aligned dataset:
• SyNOnly resulted better convergence in more 

homogeneous datset.
• SyNOnly have lower variance. 

• However, strong learners often cause 
overfitting (see the next slide)
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With SyNOnly, 
the template improved over iterations.

With SyNRA and SyN, the template 
almost converged at the first 
iteration. Overfitting?



Result: affine transform causes overfitting on structurally heterogeneous dataset

The warping of an image at the 5th iteration using SyN (left) and SyNRA (right) 

• The affine transform in SyN and SyNRA
introduced randomness and overfitting. 
• The randomness stacked up within each 

iteration.
• The affine transform is supposed to align 

image, but it did more than that. Noticeably, 
affine transformation continuedly added 
unexpected warping over the registration.

The lineplot for L2-norm of the transform as the output of 10-
iteration SyGN on structurally heterogeneous dataset with 15 
repetitions 



Conclusion

• `SyN` and `SyNRA` are not appropriate for the structurally 
heterogeneous dataset, due to the affine transformation at every 
image-to-template registrations.
• `SyNOnly` is the better option, although it require many more 

iterations for the template to converge.
• It might require more than 10 iteration, although the documentation says 

“should be greater than 1 less than 10”.

https://antsx.github.io/ANTsRCore/reference/buildTemplate.html


Update on PET 
template processing

Unit

Resolution



Update on PET template processing

• Issue with different Unit
• NiAD_Clresult_SPM8.xlsx has mean value of whole cerebellum for some scans 

(colname: WhlCbl_2mm). I can standardize the PET images to identical unit of 
SUVr.
• Need to solve: this file did not contain some newer scans. 

• Issue with different resolution:
• I also test the function to homogenize PET images with different resolution: 

ants.apply_transforms.



Idea: Compare template between group-wise registration algorithms

• What can be compared?
• SSIM: the global-level similarity between two images
• ANOVA: the pixel-level variance of warped images between algorithm.

• What can be answer?
• Does algorithms different?
• Does algorithms perform perform differently by data acquisition and/or 

subject demographics?


